a2 United States Patent

Robb et al.

US009185077B2

US 9,185,077 B2
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) ISOLATION PROXY SERVER SYSTEM

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

Applicant: Verizon Patent and Licensing Inc.,
Basking Ridge, NJ (US)

Inventors: Terence A. Robb, Colorado Springs, CO
(US); William M. Lacey, Colorado
Springs, CO (US); William J. Wofford,
IV, Colorado Springs, CO (US); James
R. Lehmpuhl, Colorado Springs, CO
(US)

Assignee: Verizon Patent and Licensing Inc.,
Basking Ridge, NJ (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/089,347

Filed: Nov. 25, 2013

Prior Publication Data

US 2015/0150113 Al May 28, 2015

Int. CL.

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC HO04L 63/0281 (2013.01); HO4L 67/28

(2013.01)

(58) Field of Classification Search
CPC .. HO4L 63/02; HO4L 63/0281; HO4L 63/0209
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2002/0161904 Al* 10/2002 Tredoux etal. 709/229

* cited by examiner
Primary Examiner — Izunna Okeke

(57) ABSTRACT

An isolation proxy server system separates a typical proxy
server or reverse proxy server into two physical computing
platforms. A first physical platform, a front end proxy server,
receives requests from clients on an external network, but is
unable to relay requests by originating corresponding
requests on an internal network. A second physical platform,
a back end proxy client, originates distinct work requests to
the front end proxy server. The front end proxy server for-
wards client requests to the back end proxy client in responses
to the distinct work requests it receives from the back proxy
client. The back end proxy client relays the client requests to
a target server. Thus, the front end proxy server may not
originate new requests to the server(s) in the protected zone,
and the back end proxy client may not receive new requests
from clients or from the front end proxy server.

20 Claims, 3 Drawing Sheets

]\Extemai
I

Netwark
110

128a fesponse

125b

i
WO
|

VVVVVV [p—

N
1 eomposed /!
rk packet(s) | //

B Front
(IEZC%\!Q@L -4 End

Connection Bwapper l

o ———
- m Internal Server ~,
|

N
100
137 T T PP
Lo compesed 7 17T Tequest” 1| Back by 4aq
13687+ | Tiwork packet(s)| 1 (decomposed - End
13607 "1 _(response) | |work packet(g))i-+ - 1343
. e 134b
! External Client
Internal i
Network 135
130 M
7 ~
Service Target 132
Processing Server

1387,

U.S. Patent Nov. 10, 2015 Sheet 1 of 3 US 9,185,077 B2
f// o,
External
Network
110
\\
1 1-123a
—] — T | 123b
125a | ["response | |~ composed “/;7/
125b /] ~ I (decomposed | 1work packet(s) | Front
- work packet(s))! | __(request) _ - gpg DMZ
_ 1 120
124 S Connection Swapper
o
' Internal Server 121
127 -
100 142 ,w"”’“
w,{ Config l Internal Client
137 — I
—~| 1" Composed T '~ Tequest 7! Back 131
136a jﬁl work packet(s) | E (decomposed |+ _End Y 124
136b”° 11 (response) ! work packet(s))!- - a
t-ﬁ,_Q.__JT, | P[i(s) 134b
Ext | Client
Internal \ xerna’ en " /
Network 135
130
Service Target 132
Processing Server
1 i d A
e 4 FIG. 1

US 9,185,077 B2

Sheet 2 of 3

Nov. 10, 2015

U.S. Patent

/ pd
w /M M%; Sdogjs, U peaiy] //MM Z OLI
I L—szz el op \
| | v asuodsay 901AI8g 1901 :
1oA18S v asuodsey soinisg |V osuodsey sonies fr—ss LR N ERINERS
_ v esuodsa : . L+U peady] e hg
1ebie] wol b=l =Tl T TRITOTY q upeeL oo 0e7 o7
Vv osuodsay | RIMDS = A _
[9zz lez
a7z 5033]s, 0 pealy .rmwm
L g ssuodsay someg §ol0 0L
12A18g g estiodsey soimieg |8 8Suodsey eoineg # & Ssuodsey SoiAes
g ssuodsay A | vy ic+u pesiy] G R
1obie] woid, TSNBoY SO, O pesyy O voz
i IR oz e e
812 Tmos 612
&
,. “mw%‘w 0 M A g 1senbay g 1senbey soinieg X
> émw " DSUDASSY MIOAA g 1sonbey eoineg g 1senbay soineg
VANASTINEYS 9Lz M~ plz U Ppesiyp 2SI | sl Woliy
10Bie] o] v 1senbey 194 .4 ~ erz~Y EREECIIENERIINES
* ! = ¥ 1senbay aoinieg b —
v 159nbey 30IMBS 3500055y SIop K V 199NDOY 99IMSS |\ jsenbay soinieg cle
o o~ ﬂ 0 pesIyL : usIlD WoJ
L2 1174 502 e 802 L+U peaiy sy E
7 102~ V 1enboy oSS
sisiduwio)) uonezyenu S
) e f ooz
50¢
1sonbay yiopn | .8033[S, U peaiyl
- J5 el v_ oz
1s8nbey Miopa v— Sdssjs, g peaiy
Biu
e -
‘ ozl ¢ B \ R —
me% weig \ | Jenieg jeulsy r ~ laddemg JoMSg jeUOIXT |
pug xummm‘ n_msgg N | Pudjuog uonosuuod | puzjuoiy /
{ ;L buz oeg “Z ; h N
_ . P
- < :
seL eel ¢ ot - ek ech
LEL LZ1

US 9,185,077 B2

Sheet 3 of 3

Nov. 10, 2015

U.S. Patent

[1dD NOY WVd

— | Q—

FI0MIIN
& WOoI /0],
£DIA
NV INOY ndo

NIOMISN
B WOLJ/0],

v "OIA

I

I

SLAOd
NOD

0/1

US 9,185,077 B2

1
ISOLATION PROXY SERVER SYSTEM

BACKGROUND

In a client-server computing environment, an end user of a
client computing device may initiate a request for a service
provided by another computing device acting as a target
server. For example, an end user may use a web browser client
on a PC to request a web page. The web page may be stored
on a web server and delivered to the PC in response to the
request. The web browser may then render the received
response on the PC for the end user.

In the client-server computing environment described
above, the request from the client contains addresses associ-
ated with the client and the target server. Likewise, the
response contains addresses associated with the client and the
target server. In this way, the target server knows where the
request came from; and the client knows where the response
came from. If the target server becomes compromised by an
attacker, however, the attacker may be able to acquire the
client’s address and direct an attack at the client. In a similar
fashion, when the target server’s address is publically known,
the target server becomes much more susceptible to attack.

A typical proxy server provides enhanced security to cli-
ents in a client-server environment by hiding the clients’ real
addresses behind the address of the proxy server. The proxy
server receives requests from the clients for services provided
by target servers. The proxy server then relays the requests on
behalf of the clients to the corresponding target server as if the
requests originated from the proxy server, by replacing each
client address with the address of the proxy server. In this way,
the requests appear to be from the proxy server, and the
corresponding target server is unaware of the individual cli-
ents. This allows the clients some protection from attacks
originating from the target servers or other sources outside of
the proxy server’s internal network.

In a similar fashion, a reverse proxy provides protection to
one or more target servers by receiving requests from clients
on behalf of the target servers. Clients send their requests to
the address of the reverse proxy server, which in turn replaces
the address of the reverse proxy server with the address of the
corresponding target server and relays the request to the cor-
responding target server. As such, individual addresses of the
target servers are not publically known, and the target servers
are better protected.

Hence, proxy servers provide protection for clients and
reverse proxy servers provide protection for target servers by
obscuring the existence of the clients and target servers,
respectively. An attacker is unable to attack an unknown
victim (client or target server). Proxy servers and reverse
proxy servers, however, are vulnerable to attack and, once
compromised, may be used by an attacker to reach the clients
and target servers that were once obscured. This is possible
because typical proxy servers and reverse proxy servers may
originate a request to a client or target server, respectively,
without receiving a corresponding request from an outside
source.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawing figures depict one or more implementations in
accord with the present teachings, by way of example only,
not by way of limitation. In the figures, like reference numer-
als refer to the same or similar elements.

FIG. 1 is a high-level functional block diagram of an
example of a system of proxy servers that provide proxy
services and support an example of a proxy isolation system.

40

45

60

2

FIG. 2 is a high-level process flow of an example of a
process of receiving service requests from a client, mapping
front end internal server threads with front end external server
threads by a connection swapper, exchanging work requests
and work responses between a back end internal client and a
front end internal server, and delivering service responses to
the client, in a system like that of FIG. 1.

FIG. 3 is a simplified functional block diagram of a com-
puter that may be configured as a host or server, for example,
to function as the front end proxy server in the system of FI1G.
1.

FIG. 4 is a simplified functional block diagram of a per-
sonal computer or other work station or terminal device.

DETAILED DESCRIPTION OF EXAMPLES

In the following detailed description, numerous specific
details are set forth by way of examples in order to provide a
thorough understanding of the relevant teachings. However, it
should be apparent that the present teachings may be prac-
ticed without such details. In other instances, well known
methods, procedures, components, and/or circuitry have been
described at a relatively high-level without detail, in order to
avoid unnecessarily obscuring aspects of the present teach-
ings.

A need exists for a system that provides proxy services
without allowing a front-end proxy server to originate any
request.

The various examples disclosed herein relate to an isola-
tion proxy server system that separates a typical proxy server
or reverse proxy server into two physical computing plat-
forms. One physical computing platform functions, for
example, as a front end proxy server that receives a user
request from a user client on an external network, but is
unable to relay the user request by originating a correspond-
ing new request on the internal network. The other physical
computing platform functions, for example, as a back end
proxy client and originates a distinct request from the back
end proxy client to the front end proxy server.

The front end proxy server may then, for example, forward
the received user request from the user client to the back end
proxy client as a response to the distinct request received from
the back end proxy client. The back end proxy client then
relays the user client request to a target server in a traditional
fashion. The target server, for example, processes the user
request and returns a response in a traditional fashion to the
back end proxy client. The back end proxy client then returns
the response from the target server to the front end proxy
server, as a new request, and the front end proxy server
delivers the response to the user client.

A computer or the like running a server program, for con-
venience, is often itself referred to as a server, a server com-
puter or a server platform. Conversely, another computer or
the like that runs a client program for consuming the particu-
lar service offered by a server is often itself referred to as a
client, a client computer or a client device.

A server is typically implemented as a server application
program running on the computer or other platform that is to
be configured to offer the service, whereas the client is typi-
cally implemented as a client application program running on
the device that is to be configured to consume the service. In
many cases, the client applications run on end users’ equip-
ment, such as terminals or mobile devices that communica-
tion with the computer(s) running the server program, via a
network. For some purposes, however, a client and server may
run in the same device and/or a device that is a server for one
purpose may be a client of another server for some other

US 9,185,077 B2

3

purpose. For convenience, the description that follows may
often use the term server to broadly represent a data process-
ing device used to run the applicable server programming.
Such devices typically utilize general purpose computer
hardware with appropriate network communication capabili-
ties, to perform server processing and to perform attendant
communications via one or more networks. The hardware
elements of such server computers may be conventional in
nature.

A proxy is a specialized type of server that receives a
request form a client and relays the request to an intended
target server while replacing the client address with the
address of the proxy server, so that the request appears to
come from the proxy. A reverse proxy is another specialized
type of server that operates in a reverse fashion to a proxy.
That is, the reverse proxy receives a response from a target
server and relays the response to an intended client while
replacing the target server address with the address of the
Proxy server.

A demilitarized zone (DMZ) is a network segment or seg-
ments wherein attacks and malicious traffic from an external
network are anticipated and security measures are imple-
mented to minimize the impact of attacks and malicious traf-
fic on an internal network. A network is considered external to
an entity or organization when the entity or organization does
not have control over the network. A network is considered
internal to an entity or organization when the entity or orga-
nization does have control over the network. As such, the
DMZ functions as a buffer between an external network for
which an entity or organization lacks control and an internal
network for which an entity or organization has control and
desires protection. In addition, server(s) located within the
DMZ may be isolated from other server(s) or system(s) in that
the DMZ server(s) may only communicate with the other
server(s) or system(s) in a predefined fashion and/or in com-
pliance with predefined rules.

Further, a system may have a front end component and a
back end component. That is, in a system, users or equipment
in an external network may only interact with a front end
component. In a similar fashion, servers and/or terminal
equipment in an internal network may only interact with a
back end component. A DMZ system, then, requires the front
end component and the back end component to interact, for
example, in order to facilitate communications between end
users in the external network and servers in the internal net-
work.

The isolation proxy server system may enhance security,
for example, because the front end proxy server may only
respond to corresponding requests for resource(s) received
from both the external and internal networks, but may not
originate any requests. For example, any communication des-
tined for the external network from the front end proxy server
must only be in response to a request received from that
network. Similarly, any communication destined for the inter-
nal network from the front end proxy server must only be in
response to a request received from that network. Conversely,
the back end proxy client may only originate requests to the
front end proxy server and target servers, but may not receive
any requests originated from either the external or internal
networks. Thus, even if the front end proxy server were com-
promised, for example, an attacker would not be able to
originate an attack.

Reference now is made in detail to the examples illustrated
in the accompanying drawings and discussed below. FIG. 1
illustrates an example of the isolation proxy server system
100 including an external network 110, a DMZ 120, and an
internal network 130.

10

15

20

25

30

35

40

45

50

55

60

65

4

The external network 110 may be, for example, the Internet
or an intranet. In addition, the external network 110 may be a
wide area network (WAN) or alocal area network (LAN). The
external network 110 may, for example, have at least one
client 111. Client 111 may be, for example, a client computer,
such as depicted in FIG. 4 and further described below. The
client 111 may connect to the external network 110 via any
convenient available wired or wireless network communica-
tions technology. Such a wired network communications net-
work technology may be, for example, Ethernet over cable or
optical fiber; and such as wireless network communications
technology may use, for example, Wi-Fi or cellular data com-
munications.

The internal network 130 may be a LAN or WAN. For
example, the internal network 130 may be a LAN located
within a data center or some other enterprise facility. The
internal network 130 may provide communications for or
include, for example, one or more target servers 132. The
target server 132 may be, for example, a host computer plat-
form, such as depicted in FIG. 3 and further described below.
Thetarget server 132 may connect to the internal network 130
via wired or wireless network communications media. Such
wired network communications may be, for example, Ether-
net over cable or optical fiber.

Although DMZ7 120 may be a single hardware platform, the
DMZ 120 may be a number of hardware devices connected to
form or via a network, for example, a LAN or WAN. For
example, the DMZ 120 may be a LAN located within the
same data center or other enterprise facility as the internal
network 130. Alternatively, the DMZ may be located within a
different data center or other enterprise facility than the inter-
nal network 130. The DMZ 120 is intended, for example, to
provide a buffer between the external network 110 and the
internal network 130.

The client 111 may, for example, run an application that
makes requests for a service intended to ultimately be ser-
viced by the target server 132 located within internal network
130. The application running on the client 111 may be, for
example, a web browser and the target server 132 may, for
example, implement service processing 138. Such service
processing 138 may be, for example, a web server. The cli-
ent’s service request may be, for example, an HTTP request.
Although the examples below utilize a web browser, web
server, and HTTP request, the isolation proxy server system
and methodology are not restricted to such application or
request. For example, the provided service may be a stream-
ing media service or a file download service. In such alternate
examples, the request may be a real time protocol (RTP) or
file transfer protocol (FTP) request. In addition, the applica-
tion running on the client 111 may be a standardized end user
application, a customized end user application, or any client-
server application that requests a service from the target
server 132 and receives a response from the target server 132.

The isolation proxy server system 100 may further include
a front end proxy server 121 located within the DMZ 120 and
a back end proxy client 131 located within the internal net-
work 130. The front end proxy server 121 and the back end
proxy client 131 may be, for example, host computer plat-
forms, such as depicted in FIG. 3 running appropriate pro-
gramming as further described below. The front end proxy
server 121 may communicate with or via the network of the
DMZ 120 and with the back end proxy client 131 via internal
firewall 142. The back end proxy client 131 may communi-
cate with other elements of the internal network 130. Such
communication may be, for example, via wired or wireless
network communications. The wired network communica-
tions may be, for example, Ethernet over cable or optical fiber.

US 9,185,077 B2

5

The front end proxy server 121 may include an external
server 122, a connection swapper 124, and an internal server
126, as described in further detail below. The back end proxy
client 131 may include an internal client 133 and an external
client 135, as described in further detail below. The front end
proxy server 121 and the back end proxy client 131 each
includes a configuration file 127, 137. Each configuration file
127, 137 contains rules that control how the various elements
of front end proxy server 121 and back end proxy client 131
interact, as described below.

In the examples, as detailed further below, the external
server 122 composes work packet(s) 123a, 1235 that encap-
sulate request(s) for service from client 111 and decomposes
work packet(s) 125a, 1256 to receive encapsulated
response(s) to the request(s) for service for sending service
response to the client 111. The external server 122, for
example, composes work packet 123a by encapsulating (e.g.
embedding) the original request for service from client 111
into a field within work packet 123q4. In an example, a work
packet includes a header for routing information an the like
and a body for message content, and the field containing the
request for service is the body field within work packet 123a.
Likewise, external server 122, for example, decomposes a
received work packet 1254 to recover the encapsulated (e.g.
embedded) service response (responsive to a service request)
from a field within the received work packet 125q4. In an
example, the field is the body field within work packet 125a.

In the back end proxy client 131, the internal client 133
decomposes work packet(s) 134a, 1345 to receive the encap-
sulated request(s) for service for relay to the target server 132
and composes work packet(s) 136a, 1365 that encapsulate
response(s) to the request(s) for service received from the
target server 132.

In addition, the isolation proxy server system 100 may
further include an external firewall 141 and an internal fire-
wall 142. The external firewall 141, in the example, is
between the DMZ 120 and the external network 110. The
internal firewall 142, in the example, is between the DMZ 120
and the internal network 130. In this example, the client 111
communicates via the external network 110 with the frontend
proxy server 121 via the DMZ 120 only through the external
firewall 141. Further in this example, the front end proxy
server 121 communicates via the DMZ 120 with the back end
proxy client 131 via the internal network 130 only through the
internal firewall 142.

In the example of FIG. 1, the external firewall 141 provides
protection to the DMZ 120 and the front end proxy server 121
from attacks or malicious traffic originating in the external
network 110. In the illustrated example, the internal firewall
142 provides protection to the internal network 130, the back
end proxy client 131, and the target server 132 from attacks or
malicious traffic also originating in the external network 110
as well as originating in the DMZ 120.

In one example, the external firewall 141 is configured to
only allow requests originating from the external network
110, such as client 111, and destined for the front end proxy
server 121. In addition, the external firewall 141 is also con-
figured to only allow responses from the front end proxy
server 121 to the external network 110 that correlate to exist-
ing requests from the external network 110. As is common in
most firewalls, external firewall 141 and internal firewall 142
correlate existing requests and responses by maintaining a
table and/or database of parameters related to each request
and each response (e.g. source and/or destination IP address,
source and/or destination IP port, etc.). In this example, the
external firewall 141 blocks any request from the external
network 110 that is not destined for the front end proxy server

10

15

20

25

30

35

40

45

50

55

60

65

6

121. Also in this example, the external firewall 141 blocks any
response from the front end proxy server 121 to the external
network 110 that does not correlate to an existing request
from the external network 110. Further in this example, the
external firewall 141 also blocks any request from the front
end proxy server 121.

In a similar example, the internal firewall 142 is configured
to only allow requests originating from the back end proxy
client 131 located within the internal network 130 and des-
tined for the front end proxy server 121. In addition, the
internal firewall 142 is also configured to only allow
responses from the front end proxy server 121 to the back end
proxy client 131 located within the internal network 130 that
correlate to existing requests from the back end proxy client
131. That is, for example, the front end proxy server 121 only
receives requests from the back end proxy client 131 and
generates responses to the back end proxy client 131 that
correlate to those existing requests. At the same time, in this
example, the front end proxy server 121 will not originate any
new requests (e.g. front end proxy server 121 can communi-
cate in response to requests from, but cannot originate any
new communication with, back end proxy client 131). Like-
wise, in this example, the back end proxy client 131 will only
generate new requests to the front end proxy server 121 and
receive responses from the front end proxy server 121 that
correlated to those existing requests. Further in this example,
the back end proxy client 131 does not receive any new
requests.

The isolation proxy server system 100, when configured as
described in the previous examples, isolates the internal net-
work 130 by eliminating the need and/or ability of the internal
network 130 to receive any request from the external network
110 and/or the DMZ 120. In addition, the isolation proxy
server system 100 provides additional security, for example,
by translating or replacing the address of the target server 132
with the address of the front end proxy server 121 in
responses sent out through the external network 110. Such
address translation occurs, for example, in external firewall
141, internal firewall 142, front end proxy server 121, and/or
back end proxy client 131.

Although FIG. 1 and the corresponding description above
illustrate a single client 111, a single front end proxy server
121, a single back end proxy client 131, a single external
firewall 141, a single internal firewall 142, an a single target
server 132, this is only for simplicity in describing the isola-
tion proxy server system 100. The isolation proxy server
system 100 may include and/or communicate with more than
one or each of these elements without changing the behavior
of' the isolation proxy server system 100.

For example, one or more front end proxy servers 121 may
receive multiple request for multiple services provided by one
or more target servers 132. In this example, each request may
come from the same client 111 or different clients 111. The
same client 111, for example, may send all requests to the
same front end proxy server 121 or may send each request to
a different front end proxy server 121. In addition, each front
end proxy server 121, for example, may send all requests to
the same back end proxy client 131 or may send each request
to a different back end proxy client 131. Each back end proxy
client 131, for example, may also send all requests to the same
target server 132 or may send various requests to different
target servers 132.

Typically, in such an example, each response is only
returned to the source of each respective request. For
example, the target server 132 would only return a response to
the back end proxy client 131 from which the target server
132 received the respective request. In a similar fashion, the

US 9,185,077 B2

7

front end proxy server 121 would only send a response to the
same back end proxy client 131 or the same user client 111
from which the front end proxy server 123 received the
respective request.

With further reference to FIG. 1, the elements of the front
end proxy server 121 and the back end proxy client 131 will
now be described in relation to the flow of a request for a
service from the client 111 to the target server 132 providing
the service as well as a corresponding response to the request
for the service from the target server 132 to the client 111.

In the examples, a request for a service, or service request
as referred to in FIG. 2, is a specific request from a client
application to a target server to perform the specific service.
Likewise, a response to the request for the service, or service
response as referred to in FIG. 2, is a specific response from
the target server containing the results of the target server
performing the specific service.

In contrast, a request for work, or work request as referred
to in FIG. 2, is a general request by a first element for work
that needs to be performed from a second element within the
isolation proxy server system 100. For example, the back end
proxy client internal client 133 requests work from the front
end proxy server internal server 126, as described further
below. Similarly, a response to the work request, or work
response as referred to in FIG. 2, is a general response by the
second element to the first element containing the work to be
performed. Continuing the example, the front end proxy
server 126 responds to the work request form the back end
proxy client internal client 133 with a composed work packet
123a, as described further below. In the examples, the com-
posed work packet 123a encapsulates the service request
from the client 111. As such, the work response contains the
service request.

In the isolation proxy server system 100, as described in
detail below, a work request may also contain work per-
formed in response to a previously work response. Returning
to the previous example, when the back end proxy client
internal client 133 requests work from the front end proxy
server internal server 126, the work request also contains a
composed work packet 136a, as described further below. In
the examples, the composed work packet 1364 encapsulates a
service response to a previous service request. As such, the
work request may also contain a service response to a previ-
ous service request. That is, a work request is both a general
request for work to be performed (e.g. a service request) as
well as a specific response containing performed work (e.g. a
service response).

FIG. 2 depicts the flow of request(s) for a service and
response(s) to the request(s) for a service as well as the flow
of work response(s) and work request(s) within the isolation
proxy server system 100 in further detail. In the examples,
configuration file 137 of the back end proxy client 131 con-
tains one or more rules that allow or deny the back end proxy
client internal client 133 to send work requests to or receive
work responses from the front end proxy server internal
server 126. Additionally, configuration file 137 of the back
end proxy client 131 contains, for example, one or more rules
that allow or deny the back end proxy client external client
135 to send service requests to or receive service responses
from target server 132. Similarly, configuration file 127 of the
front end proxy server 121 contains one or more rules that
allow or deny the front end proxy server internal server 126 to
receive requests for work from or send responses to requests
for work to the back end proxy client internal client 133. A
number of the steps shown in FIG. 2 may be regulated by one
or more rules in these configuration files 127, 137.

10

15

20

25

30

40

45

50

55

60

65

8

The isolation proxy server system 100 is initialized when
the back end proxy client internal client 133 submits one or
more initial request(s) for work 201, 203 to the front end
proxy server internal server 126, as depicted in FIG. 2. For
example, when the back end proxy client 131 is powered on or
otherwise booted-up and the back end proxy client internal
client 133 is launched, the back end proxy client internal
client 133 will submit initial request(s) for work at 201,203 to
the front end proxy server internal server 126. Two initial
work requests are shown by way of example. The back end
proxy client internal client 133 may, based on configuration
file 137, submit more than two initial work requests in order
to improve performance. Each of the initial request(s) for
work in steps 201, 203 may be, for example, an HTTP
request. In this example, the front end proxy server internal
server 126 is not able to perform any work until receipt of one
or more initial request(s) for work from the front end proxy
server internal client 133.

Each initial request for work prompts the front end proxy
server internal server 126 to generate a corresponding initial
internal thread of execution. Thread 0 and Thread n at steps
202, 204. More threads may be opened if the server receives
more work requests before it processes requests and sends
responses. A thread of execution is the smallest indepen-
dently manageable sequence of programmed instructions.
The front end proxy server 121 is, for example, a program.
The external server 122, connection swapper 124, and inter-
nal server 126 are each, for example, program objects within
the front end proxy server 121 program. A process within a
computing platform, such as the front end proxy server 121,
may contain multiple threads of execution which share
memory and resources within the process. Program objects
within a program, such as external server 122 and internal
server 126, generate threads of execution. An additional pro-
gram object, such as connection swapper 124, may exchange
data between threads of execution generated by one program
object, e.g. external server 122, and threads of execution
generated by another program object, e.g. internal server 126.
Such exchange of data by the front end proxy server connec-
tion swapper 124 is described in further detail below.

Once the initial request(s) for work are submitted in 201,
203 and the corresponding initial internal threads of execu-
tion are established at steps 202, 204, initialization is com-
plete 205. Once initialization is complete, the back end proxy
client internal client 133 awaits a response to the initial
request(s) for work and the initial internal threads of execu-
tion sleep until the front end proxy server connection swapper
124 is ready to exchange data with the internal threads of
execution.

At this point in the process example of FIG. 2, the front end
proxy server external server 122 may, for example, receive a
request A for the service provided by the target server 132
from the client 111 at step 206. For purposes of an example to
consider here, we will assume that the client 111 requests a
web page stored on the target server 132. Receipt of such a
service request prompts the front end proxy server external
server 122 to compose a work packet 123a by encapsulating
the received service request A as part of step 207.

The composed work packet 123a contains, for example, a
unique ID and work package version number. In an example,
over time, the work packet format may be changed. Each
work packet format, in this example, has a new version num-
ber assigned. As such, the work packet version number
defines, for example, which version or format of work packet
is currently being implemented. The composed work packet
123a also contains a mode indicating the contents of the
composed work packet 123a. The mode may be, for example,

US 9,185,077 B2

9

one of: empty, request, response, keepalive, heartbeat, or
DirectData. A keepalive work packet, for example, is
exchanged to maintain an existing session between the front
end proxy server 121 and back end proxy client 131. A heart-
beat work packet, for example, is sent from one element (e.g.
the front end proxy server 121) to the other element (e.g. the
back end proxy client 131) to determine if the other element
is still functioning. In some examples, the front end proxy
server 121 and the back end proxy client 131 need to
exchange information unrelated to a specific service request
or response, in which case a DirectData work packet is used.
The composed work packet 123a also contains various prop-
erties from the received client request including the target
URL, HTTP method, HTTP headers and parameters, as well
as the service request itself.

In the example of FIG. 2, the front end proxy server exter-
nal server 122 then generates a new external thread of execu-
tion, Thread n+1 on the external side of the front end proxy
server connection swapper 124 (atstep 207), based on service
request A received from client 111; and front end proxy server
external server 122 submits a composed work packet 123a to
the front end proxy server connection swapper 124 via that
Thread n+1. The front end proxy server connection swapper
124 receives the composed work packet 123a in the Thread
n+1 in step 207, records that unique ID of the composed work
packet 1234, and wakes up one of the initial internal threads
of execution, for example Thread 0, to deliver the composed
work packet 1234 to the front en proxy server internal server
126 at step 208. When the initial internal thread of execution,
Thread 0 in this example, wakes up, the front end proxy server
internal server 126 generates, for example, a work response at
209 in response to the initial request for work from step 201.
The work response contains the composed work packet 123a
composed as part of step 207. The work response at 209 may
be a HT'TP response to the initial request for work 201 HTTP
request. The front end proxy server internal server 126 sub-
mits, for example, the work response containing work packet
123a to the back end proxy client internal client 133 as part of
step 209. The work request submitted at 209 thus includes the
client server request A.

In a fairly high traffic implementation, new requests for
service sometimes arrive before earlier service requests are
fully serviced. To illustrate by way of example, at about the
same time, the front end proxy server external server 122
receives another request B for service from the client 111 or
elsewhere on the external network 110 at 212. The additional
request B, for example, may be arequest for another web page
provided by target server 132. The front end proxy server
external server 122 composes another work packet 1235 con-
taining service request B, generates another thread of execu-
tion (Thread n+2), and submits the other composed work
packet 1235 to the front end proxy server connection swapper
124 at step 213. The front end proxy server connection swap-
per 124, in such an example, records the unique ID of the
other composed work packet 1235 and wakes the other initial
internal thread of execution (Thread n) to deliver the other
composed work packet 1235 to the front end proxy server
internal server 126 at step 214. When the other initial internal
thread of execution, Thread n in this example, wakes up, the
front end proxy server internal server 126 generates, for
example, a work response at step 215 in response to the initial
request for work 203. The work response contains the other
composed work packet 1235 composed as part of step 213.
The work response submitted at step 216 thus includes the
client service request B. Alternatively, as discussed below, the
other composed work packet 1235 and/or subsequent com-
posed work packet(s) 123a, 1235 may be delivered to the

10

15

20

25

30

35

40

45

50

55

60

65

10

back end proxy client internal client 133 as a work response
(not shown) to a subsequent work request, such as the work
request generated in step 227, for example.

Returning to the flow relative to the original work response
generated by the front end proxy server internal server 126 at
step 209, the back end prosy client internal client 133 receives
the work response, records the composed work packet 123a,
and decomposes the work packet 123a resulting in the origi-
nal request A 134q at step 210. The back end proxy client
internal client 133 also passes the service request A to the
back end proxy client external client 135 as part of step 210
and the back end proxy client external client 135 then submits
the service request A to the target server 132 at step 211.

In a similar fashion, the back end proxy client internal
client 133 receives the work response containing the other
composed work packet 1235 generated at step 215, records
the other composed work packet 1235 unique ID, and decom-
poses the other work packet 1235 resulting in the original
service request B 1345 at step 216. The back end proxy client
internal client 133 then also passes the original service
request B to the back end proxy client external client 135 as
part of step 216 and the back end proxy client external client
135 submits the service request B to the target server 132 at
step 217.

The service processing 138 by the target server 132 is
dependent on various factors of the service that target server
132 is configured to offer; and the service processing 138 and
the operations of the system 100 need not be particularly
dependent on or limited by each other except with regard to
the flow of communications outlined by way of example here.
It is assumed for this example that service processing 138
may result in a service response B prior to a service response
A, butthisis not necessarily always the case. The target server
performs service processing 138 and returns a service
response B to the back end proxy client external client 135 at
step 218. In the web request example, the service response B
may be the requested web page of content. The target server
also performs service processing 138 and returns a service
response A to the back end proxy client external client 135 at
step 225. For example, the original client service request A
may be an HTTP request for a web page, the service process-
ing 138 may be a web server, and the service response A may
be the web page as an HTTP response.

The back end proxy client external client 135 receives the
service response B and composes a new work packet 1365 by
encapsulating the service response B from the target server
132 at step 219. The back end proxy client external client 135
also receives the service response A and composes another
work packet 1364 by encapsulating the service response A
from the target server 132 at step 226.

The new composed work packet 1365 contains, for
example, the unique ID recorded from the composed work
packet 1235 and a work packet version number. That is, the
new work packet 1365 corresponds, for example, to the
received work packet 1235. The unique ID correlates the
work response to a work request so that the work response
may be identified by the front end proxy server connection
swapper 124, as described in further detail below. The new
composed work packet 136a also contains a mode indicating
the contents of the new composed work packet 1365. The
mode may be, for example, one of: empty, request, response,
keepalive, heartbeat, or DirectData. The new composed work
packet 1364 also contains various properties of the service
replay from the target server 132 including the HTTP
response version, code and status; HT'TP headers and param-
eters; and the service response B itself.

US 9,185,077 B2

11

The back end proxy client internal client 133 then gener-
ates a new request for work containing the new composed
work packet 1365 and submits the new request for work to the
front end proxy server internal server 126 at step 220. The
back end proxy client internal client 133 also generates
another new request for work containing the other composed
work packet 136a and submits the other new request for work
to the front end proxy server internal server 126 at step 227.

That is, service responses A, B from a target server 132 to
existing client service requests A, B are passed from the back
end proxy client internal client 133 to the front end proxy
server internal server 126 as a new request for work in steps
220, 227. As a further example, the back end proxy client
internal client 133 may generate new HTTP requests that are
new requests for work and also contain the web pages, from
prior examples, as HT'TP responses encapsulated within the
new composed work packets 136a, 1365, at steps 220, 227.

Although not shown in FIG. 2, in response to the new
requests for work in steps 220, 227, the front end proxy server
internal server 126 may, for example, submit subsequent
composed work packets 123a, 1235 from the initial internal
threads of execution 202, 204 to the back end proxy client
internal client 133. That is, subsequent client service requests
are passed from the front end proxy server internal server 126
to the back end proxy client internal client 133 as work
responses to existing requests for work, such as the work
requests generated in steps 220,227. In addition, the front end
proxy server internal server 126 in this example may also
submit the composed work packets 136a, 1365 encapsulating
the responses from the target server 132 contained in the new
request for work generated in steps 220, 227 to the front end
proxy server connection swapper 124 in the initial internal
threads of execution (Thread 0 and Thread n).

It may be, for example, that the back end proxy client
internal client 133 submits a subsequent request for work to
the front end proxy server internal server 126 with a subse-
quent composed work packet 136a encapsulating a subse-
quent service response B from the target server 132 corre-
sponding to a subsequent client request for service B before
the front end proxy server internal server 126 receives the new
composed work packet 136a corresponding to the initial cli-
ent request A for service. That is, step 220 relates to a service
response B and step 227 relates to service response A, even
though service request A was received at step 209 before
service request B was received at step 215. In such a case, the
front end proxy server internal server 126 may, for example,
submit the subsequent composed work packet 1365 contain-
ing the service response B to the front end proxy server
connection swapper 124 in Thread O even though Thread 0
did not deliver the composed work packet 1235 containing
the service request B from the front end proxy server connec-
tion swapper 124 to the front end proxy server internal server
126. That is, the initial threads of execution, Thread 0 and
Thread n, may be used to exchange composed work packets
123a, 1235 and composed work packets 136a, 1365 between
the front end proxy server internal server 126 and the front
end proxy server connection swapper 124 that do not neces-
sarily correspond to a correlated request for service and
response to that request for service.

Returning to the examples, upon receipt of the new com-
posed work packet 1364 in the work request generated at step
220, the front end proxy server internal server 126 delivers the
composed work packet 1365 to the front end proxy server
connection swapper 124 at step 221 via Thread 0. Thread 0
then returns to sleep and awaits another service request at step
222. In a similar fashion, upon receipt of the other composed
work packet 1364 in the work request generated at step 227,

10

15

20

25

30

35

40

45

50

55

60

65

12

the front end proxy server internal server 126 also delivers the
other composed work packet 136a to the front end proxy
server connection swapper 124 at step 228 via Thread n.
Thread n then also returns to sleep and awaits another service
request at step 299.

The front end proxy server connection swapper 124
decomposes the work packet 1365 at step 223, resulting in the
original service response B 1255. As part of step 223, the front
end proxy server connection swapper 124 also compares the
composed work packet 1365 unique ID with recorded unique
IDs from composed work packets 123a, 1235 to determine
the appropriate thread of execution, Thread n+2 in this
example, in which to submit the response B from the target
server 132 to the front end proxy server external server 122.
Likewise, the front end proxy server connection swapper 124
also decomposes the work packet 1364 at step 230, resulting
in the original service response A 125a. As part of step 230,
the front end proxy server connection swapper 124 also com-
pares the composed work packet 136a unique ID with
recorded unique IDs from composed work packets 123a,
1235 to determine the appropriate thread of execution, Thread
n+1 in this example, in which to submit the response A from
the target server 132 to the front end proxy server external
server 122. That is, the front end proxy server connection
swapper 124 utilizes, for example, the work packet unique ID
of the new composed work packets 1364, 1365 to determine
a thread of execution. Thread n+1 or Thread n+2, that corre-
sponds to a correlated request for service and response to the
request for service such that the corresponding service
response is returned to the appropriate user client 111.

Hence, FIGS. 1-2 and the corresponding descriptions
above explain examples of an isolation proxy server system
100 and operation of such a system 100. The front end proxy
server external server 122 only receives requests for a service
provided by the target server 132 from a client like user client
111 on the external network 110; and the front end proxy
server internal server 126 only receives requests for work
from the back end proxy client internal client 133. The front
end proxy server internal server 126 forwards the received
client requests for services provided by the target server 132
encapsulated in composed work packets 123a, 1235 to the
back end proxy client internal client 133 as work responses to
requests for work originated by back end proxy client internal
client 133. With the exception of the initial requests for work,
subsequent requests for work from back end proxy client
internal client 133 to front end proxy server internal server
126 may, whenever practical, carry composed work packets
136a, 1365 encapsulating service responses from the target
server 132. The front end proxy server connection swapper
124 maps composed work packets 1364, 1365 encapsulating
service responses form the target server 132 received by the
front end proxy server internal server 126 from the back end
proxy client internal client 133 with composed work packets
123a, 1235 encapsulating service requests from client 111 so
that the front end proxy server external server 122 may then
delivery the correct service response to the client 111.

In a similar fashion, the back end proxy client internal
client 133 only originates requests for work to the front end
proxy server internal server 126 and receives client requests
for services provided by the target server 132 from the front
end proxy server internal server 126 encapsulated in com-
posed work packets 123a, 1235 as responses to the requests
for work. In addition, the back end proxy client external
server 135 only originates requests for service to the target
server 132 based on the client requests for services provided
by the target server 132 encapsulated in the composed work
packets 123a, 1235 and only receives service responses from

US 9,185,077 B2

13

the target server 132 corresponding to the client requests for
services provided by the target server 132. The back end
proxy client external server 135 composes work packets
136a, 1365 encapsulating the service responses from the
target server 132 corresponding to the client requests for
services provided by the target server 132. The back end
proxy client internal client 133 then forwards the composed
work packets 1364, 1365 encapsulating the service responses
from the target server 132 corresponding to the client requests
for services provided by the target server 132 to the front end
proxy server internal server 126 in the requests for work.

As outlined above, isolation proxy server system 100 func-
tions may be implemented by configuration of computer plat-
forms as in the front end proxy server 121, the back end proxy
client 131 and the target server 132 as well as the client 111.
Such configuration typically entails programming for the pro-
cessors. We have discussed examples of the various elements
121, 131, and 132, however, it may be helpful to briefly
consider programmable computers, e.g. for server operations
and/or for other types of end user or terminal devices.

FIGS. 3 and 4 provide functional block diagram illustra-
tions of general purpose computer hardware platforms. FIG.
3 illustrates a network or host computer platform, as may
typically be used to implement a server. FIG. 4 depicts a
computer with user interface elements, as may be used to
implement a personal computer or other type of work station
or terminal device, although the computer of FIG. 4 may also
act as a server if appropriately programmed. It is believed that
the general structure and general operation of such equipment
as shown in FIGS. 3 and 4 should be self-explanatory from the
high-level illustrations.

A server, for example, includes a data communication
interface for packet data communication. The server also
includes a central processing unit (CPU), in the form of one or
more processors, for executing program instructions. The
server platform typically includes an internal communication
bus, program storage and data storage for various data files to
be processed and/or communicated by the server, although
the server often receives programming and at a via network
communications. The hardware elements, operating systems
and programming languages of such servers are conventional
in nature. Of course, the server functions may be imple-
mented in a distributed fashion on a number of similar plat-
forms, to distribute the processing load.

A computer type user terminal device, such as a PC or
tablet computer, similarly includes a data communication
interface CPU, main memory and one or more mass storage
devices for storing user data and the various executable pro-
grams (see FIG. 4). A mobile device type user terminal may
include similar elements, but will typically use smaller com-
ponents that also require less power, to facilitate implemen-
tation in a portable form factor. The various types of user
terminal devices will also include various user input and
output elements. A computer, for example, may include a
keyboard and a cursor control/selection device such as a
mouse, trackball, joystick or touchpad; and a display for
visual outputs. A microphone and speaker enable audio input
and output. Some smartphones include similar but smaller
input and output elements. Tablets and other types of smart-
phones utilize touch sensitive display screens, instead of
separate keyboard and cursor control elements. The hardware
elements, operating systems and programming languages of
such user terminal devices also are conventional in nature.

Hence, aspects of the methods of the isolation proxy server
system outlined above may be embodied in programming.
Program aspects of the technology may be thought of as
“products” or “articles of manufacture” typically in the form

10

15

20

25

30

35

40

45

50

55

60

65

14

of executable code and/or associated data that is carried on or
embodied in a type of machine readable medium. “Storage”
type media include any or all of the tangle memory of the
computers, processors or the like, or associated modules
thereof, such a various semiconductor memories, tape drives,
disk drives and the like, which may provide non-transitory
storage at any time for the software programming. All or
portions of the software may at times be communicated
through the Internet or various other telecommunications net-
works. Such communications, for example, may enable load-
ing of the software from one computer or processor into
another, for example, from a management server or host
computer of a service provider into the computer platform of
the isolation proxy server system that will be the front end
proxy server and/or back end proxy client. Thus, another type
of media that may bear the software elements includes opti-
cal, electrical and electromagnetic waves, such as used across
physical interfaces between local devices, through wired and
optical and landline networks and over various airlinks. The
physical elements that carry such waves, such as wired or
wireless links, optical links or the like, also may be consid-
ered as media bearing the software. As used herein, unless
restricted to non-transitory, tangible “storage” media, terms
such as computer or machine “readable medium” refer to any
medium that participates in providing instructions to a pro-
cessor for execution.

Hence, a machine readable medium may take many forms,
including but not limited to, a tangible storage medium, a
carrier wave medium or physical transmission medium. Non-
volatile storage media include, for example, optical or mag-
netic disks, such as any of the storage devices in any compu-
ter(s) or the like, such as may be used to implement the DIPS
front end proxy server, etc. shown in the drawings. Volatile
storage media include dynamic memory, such as main
memory of such a computer platform. Tangible transmission
media include coaxial cables; copper wire and fiber optics,
including the wires that comprise a bus within a computer
system. Carrier-wave transmission media can take the form of
electric or electromagnetic signals, or acoustic or light waves
such as those generated during radio frequency (RF) and
infrared (IR) data communications. Common forms of com-
puter-readable media therefore include for example: a floppy
disk, a flexible disk, hard disk, magnetic tape, any other
magnetic medium, a CD-ROM, DVD or DVD-ROM, any
other optical medium, punch cards paper tape, any other
physical storage medium with patterns of holes, a RAM, a
PROM and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave transporting data or instruc-
tions, cables or links transporting such a carrier wave, or any
other medium from which a computer can read programming
code and/or data. Many of these forms of computer readable
media may be involved in carrying one or more sequences of
one or more instructions to a processor for execution.

While the foregoing has described what are considered to
be the best mode and/or other examples, it is understood that
various modifications may be made therein and that the sub-
ject matter disclosed herein may be implemented in various
forms and examples, and that the teachings may be applied in
numerous applications, only some of which have been
described therein. It is intended by the flowing claims to claim
any and all applications, modifications and variations that fall
within the true scope of the present teachings.

Unless otherwise states, all measurements, values, ratings,
positions, magnitudes, sizes, and other specifications that are
set forth in this specification, including in the claims that
follow, are approximate, not exact. They are intended to have

US 9,185,077 B2

15

a reasonable range that is consistent with the functions to
which they relate and with what is customary in the art to
which they pertain.

The scope of protection is limited solely by the claims that
follow. That scope is intended and should be interpreted to be
as broad as is consistent with the ordinary meaning of the
language that is used in the claims when interpreted in light of
this specification and the prosecution history that follows and
to encompass all structural and functional equivalents. Not-
withstanding, none of the claims are intended to embrace
subject matter that fails to satisty the requirement of Sections
101, 102, or 103 of the Patent Act, nor should they be inter-
preted in such a way. Any unintended embracement of such
subject matter is hereby disclaimed.

Except as stated immediately above, nothing that has been
stated or illustrated in intended or should be interpreted to
cause a dedication of any component, step, feature, object,
benefit, advantage, or equivalent to the public, regardless of
whether it is or is not recited in the claims.

It will be understood that the terms and expressions used
herein have the ordinary meaning as is accorded to such terms
and expressions with respect to their corresponding respec-
tive areas of inquiry and study except where specific mean-
ings have otherwise been set forth herein. Relational terms
such as first and second and the like may be used solely to
distinguish one entity or action from another without neces-
sarily requiring or implying any actual such relationship or
order between such entities or actions. The terms “com-
prises,” “comprising,” or any other variation thereof, are
intended to cover a non-exclusive inclusion, such that a pro-
cess, method, article, or apparatus that comprises a list of
elements does not include only those elements but may
include other elements not expressly listed or inherent to such
process, method, article, or apparatus. An element proceeded
by “a” or “an” does not, without further constraints, preclude
the existence of additional identical elements in the process,
method, article, or apparatus that comprises the element.

The Abstract of the Disclosure is provided to allow the
reader to quickly ascertain the nature of the technical disclo-
sure. It is submitted with the understanding that it will not be
used to interpret or limit the scope or meaning of the claims.
In addition, in the foregoing Detailed Description, it can be
seen that various features are grouped together in various
embodiments for the purpose of streamlining the disclosure.
This method of disclosure is not to be interpreted as reflecting
an intention that the claimed embodiments require more fea-
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive subject matter lies in less
than all features of a single disclosed embodiment. Thus the
following claims are hereby incorporated into the Detailed
Description, with each claim standing on its own as a sepa-
rately claimed subject matter.

What is claimed is:

1. A computer, comprising:

a processor configured to control operations of the com-

puter;

a memory; and

a front end proxy server program in the memory compris-

ing:

an internal server program object;

an external server program object; and

a connection swapper program object,

wherein:

execution of the front end proxy server internal server
program object by the processor of the computer con-
figures the computer to implement functions, includ-
ing functions to:

10

15

20

25

30

35

40

45

50

55

60

65

16

(D) establish first threads of execution, wherein:

each first thread of execution is in response to a
respective request for work from a back end
proxy client internal client program object
executing on a computer platform configured as
a back end proxy client; and

each first thread of execution sleeps while waiting
to receive a request for a service provided by a
target server from a user client to the front end
proxy server external server program object;

(I) receive, by one of the first threads of execution
and from the front end proxy server connection
swapper program object, the request for the service
received from the user client;

(I1T) forward, by the one of the first threads of execu-
tion and contained in a response to the respective
request for work from the back end proxy client
internal client program object, the request for the
service received from the user client; and

(IV) send, by another one of the first threads of execu-
tion and to the front end proxy server connection
swapper program object, a response from the target
server to the request for the service received from
theuser client upon receipt of the response from the
target server to the request for the service received
from the user client contained in another request for
work from the back end proxy client internal client
program object;

execution of the front end proxy server external server
program object by the processor of the computer con-
figures the computer to implement functions, includ-
ing functions to:

(A) establish a second thread of execution in response
to receipt of the request for the service from the user
client;

(B) send, by the second thread of execution, the
request for the service received from the user client
to the front end proxy server connection swapper
program object;

(C) receive, by the second thread of execution, the
response from the target server to the request for the
service received from the user client from the front
end proxy server connection swapper program
object; and

(D) forward, by the second thread of execution and to
the user client, the response from the target server
to the request for the service received from the user
client; and

execution of the front end proxy server connection
swapper program object by the processor of the com-
puter configures the computer to implement func-
tions, including functions to:

(1) associate the second thread of execution estab-
lished by the front end proxy server external server
program object with the one of the first threads of
execution in receipt of the request for the service
received from the user client and the other one of
the first threads of execution sending the response
from the target server to the request for the service
received from the user client;

(i) receive, from the second thread of execution
established by the front end proxy server external
server program object, the request for the service
received from the user client;

(iii) send, to the one of the first threads of execution,
the request for the service received from the user
client;

US 9,185,077 B2

17

(iv) receive, from the other one of the first threads of
execution, the response from the target server to the
request for the service received from the user client;
and

(v) send, to the second thread of execution, the
response from the target server to the request for the
service received from the user client.

2. The computer of claim 1, wherein the implemented
function of the front end proxy server external server program
object to send the request for the service received from the
user client to the front end proxy server connection swapper
program object further includes functions to:

compose a work packet comprising a unique 1D, a work
packet version number, a mode indicating the contents
of the work packet, properties of the request for the
service received from the user client, and the body of the
request for the service received from the user client,

wherein the composed work packet encapsulates the
request for the service received from the user client.

3. The computer of claim 1, wherein the implemented
function of the front end proxy server external server program
object to receive the response from the target server to the
request for the service received from the user client from the
front end proxy server connection swapper program object
further includes functions to:

decompose a work packet comprising a unique ID, a work
packet version number, a mode indicating the contents
of the work packet, properties of the response from the
target server to the request for the service received from
the user client, and the body of the response from the
target server to the request for the service received from
the user client,

wherein the work packet encapsulates the response from
the target server to the request for the service received
from the user client.

4. The computer of claim 1, wherein the implemented
function of the front end proxy server internal server program
object to establish the first threads of execution further
includes functions to:

establish, in compliance with a configuration file, each first
thread of execution in response to the respective request
for work from the back end proxy client internal client
program object, wherein the configuration file com-
prises:

a rule to allow or deny the front end proxy server internal
server program object to receive the respective request
for work from the back end proxy client.

5. The computer of claim 1, wherein the one of the first
threads of execution and the other one of the first threads of
execution are a same thread of execution.

6. The computer of claim 1, wherein the one of first threads
of execution and the other one of the first threads of execution
are different threads of execution.

7. A non-transitory storage medium storing instructions
executable by a device, wherein the instructions comprise
instructions to:

execute a front end proxy server internal server program
object to:

(1) establish first threads of execution, wherein each first
thread of execution is in response to a respective
request for work from a back end proxy client internal
client program object executing on a computer plat-
form configured as a back end proxy client;

(II) receive, by one of the first threads of execution and
from a front end proxy server connection swapper
program object, a request for a service received from
a user client;

10

15

20

25

30

40

45

55

60

18

(IIT) forward, by the one of the first threads of execution
and contained in a response to the respective request
for work from the back end proxy client internal client
program object, the request for the service received
from the user client; and

(IV) send, by another one of the first threads of execution
and to the front end proxy server connection swapper
program object, a response from the target server to
the request for the service received from the user
client upon receipt of the response from the target
server to the request for the service received from the
user client contained in another request for work from
the back end proxy client internal client program
object;

execute the front end proxy server external server program

object to:

(A) establish a second thread of execution in response to
receipt of the request for the service from the user
client;

(B) send, by the second thread of execution, the request
for the service received from the user client to the
front end proxy server connection swapper program
object;

(C) receive, by the second thread of execution, the
response from the target server to the request for the
service received from the user client from the front
end proxy server connection swapper program object;
and

(D) forward, by the second thread of execution and to the
user client, the response from the target server to the
request for the service received from the user client;
and

execute the front end proxy server connection swapper

program object to:

(1) associate the second thread of execution with the one
of the first threads of execution in receipt of the
request for the service received from the user client
and the other one of the first threads of execution
sending the response from the target server to the
request for the service received from the user client;

(ii) receive, from the second thread of execution, the
request for the service received from the user client;

(iii) send, to the one of the first threads of execution, the
request for the service received from the user client;

(iv) receive, from the other one of the first threads of
execution, the response from the target server to the
request for the service received from the user client;
and

(v) send, to the second thread of execution, the response
from the target server to the request for the service
received from the user client.

8. The non-transitory storage medium of claim 7, wherein
the instructions to send the request for the service received
from the user client to the front end proxy server connection
swapper program object further comprise instructions to:

compose a work packet comprising a unique ID, a work

packet version number, a mode indicating the contents
of the work packet, properties of the request for the
service received from the user client, and the body of the
request for the service received from the user client,
wherein the composed work packet encapsulates the
request for the service received from the user client.

9. The non-transitory storage medium of claim 7, wherein
the instructions to receive the response from the target server
to the request for the service received from the user client
from the front end proxy server connection swapper program
object further comprise instructions to:

US 9,185,077 B2

19

decompose a work packet comprising a unique ID, a work
packet version number, a mode indicating the contents
of the work packet, properties of the response from the
target server to the request for the service received from
the user client, and the body of the response from the
target server to the request for the service received from
the user client,

wherein the work packet encapsulates the response from
the target server to the request for the service received
from the user client.

10. The non-transitory storage medium of claim 7, wherein
the instructions to establish the first threads of execution
further comprise instructions to:

establish, in compliance with a configuration file, each first
thread of execution in response to the respective request
for work from the back end proxy client internal client
program object, wherein the configuration file com-
prises:

a rule to allow or deny the front end proxy server internal
server program object to receive the respective request
for work from the back end proxy client.

11. The non-transitory storage medium of claim 7, wherein
the one of the first threads of execution and the other one of
the first threads of execution are a same thread of execution.

12. The non-transitory storage medium of claim 7, wherein
the one of the first threads of execution and the other one of
the first threads of execution are different threads of execu-
tion.

13. The non-transitory storage medium of claim 7, wherein
to establish the first threads of execution, each first thread of
execution sleeps while waiting to receive the request for the
service provided by a target server from the user client to a
front end proxy server external server program object.

14. A method performed by a device, the method compris-
ing:

executing a front end proxy server internal server program
object to:

(1) establish first threads of execution, wherein each first
thread of execution is in response to a respective
request for work from a back end proxy client internal
client program object executing on a computer plat-
form configured as a back end proxy client;

(II) receive, by one of the first threads of execution and
from a front end proxy server connection swapper
program object, a request for a service received from
a user client;

(IIT) forward, by the one of the first threads of execution
and contained in a response to the respective request
for work from the back end proxy client internal client
program object, the request for the service received
from the user client; and

(IV) send, by another one of the first threads of execution
and to the front end proxy server connection swapper
program object, a response from the target server to
the request for the service received from the user
client upon receipt of the response from the target
server to the request for the service received from the
user client contained in another request for work from
the back end proxy client internal client program
object;

executing the front end proxy server external server pro-
gram object to:

(A) establish a second thread of execution in response to
receipt of the request for the service from the user
client;

10

35

40

45

55

60

20

(B) send, by the second thread of execution, the request
for the service received from the user client to the
front end proxy server connection swapper program
object;

(C) receive, by the second thread of execution, the
response from the target server to the request for the
service received from the user client from the front
end proxy server connection swapper program object;
and

(D) forward, by the second thread of execution and to the
user client, the response from the target server to the
request for the service received from the user client;
and

executing the front end proxy server connection swapper

program object to:

(1) associate the second thread of execution with the one
of the first threads of execution in receipt of the
request for the service received from the user client
and the other one of the first threads of execution
sending the response from the target server to the
request for the service received from the user client;

(ii) receive, from the second thread of execution, the
request for the service received from the user client;

(iii) send, to the one of the first threads of execution, the
request for the service received from the user client;

(iv) receive, from the other one of the first threads of
execution, the response from the target server to the
request for the service received from the user client;
and

(v) send, to the second thread of execution, the response
from the target server to the request for the service
received from the user client.

15. The method of claim 14, wherein to send the request for
the service received from the user client to the front end proxy
server connection swapper program object, the instructions
further to:

compose a work packet comprising a unique ID, a work

packet version number, a mode indicating the contents

of the work packet, properties of the request for the
service received from the user client, and the body of the
request for the service received from the user client,
wherein the composed work packet encapsulates the
request for the service received from the user client.

16. The method of claim 14, wherein to receive the
response from the target server to the request for the service
received from the user client from the front end proxy server
connection swapper program object the method further com-
prising:

decomposing a work packet comprising a unique 1D, a

work packet version number, a mode indicating the con-
tents of the work packet, properties of the response from
the target server to the request for the service received
from the user client, and the body of the response from
the target server to the request for the service received
from the user client,

wherein the work packet encapsulates the response from

the target server to the request for the service received

from the user client.

17. The method of claim 14, wherein to establish the first
threads of execution, the method further comprising:

establishing, in compliance with a configuration file, each

first thread of execution in response to the respective
request for work from the back end proxy client internal
client program object, wherein the configuration file
comprises:

US 9,185,077 B2

21

a rule to allow or deny the front end proxy server internal
server program object to receive the respective request
for work from the back end proxy client.

18. The method of claim 14, wherein the one of the first
threads of execution and the other one of the first threads of
execution are a same thread of execution.

19. The method of claim 14, wherein the one of the first
threads of execution and the other one of the first threads of
execution are different threads of execution.

20. The method of claim 14, wherein to establish the first
threads of execution, each first thread of execution sleeps
while waiting to receive the request for the service provided
by a target server from the user client to a front end proxy
server external server program object.

#* #* #* #* #*

15

22

